GATE Mechanical Engineering (Batch 2)
-
Introduction ( System and Surrounding)
39.06
-
Thermal Equilibrium 1
36.49
-
Thermal Equilibrium 2
34.03
-
Thrmodynamic Properties
30.13
-
Thermodynamics Concept of Energy
10.45
-
Introduction and Importance of Applications of Thermodynamic
11.51
-
Ideal Gas Relations
60.33
-
Basics of IC engine
21.09
-
Heat Transfer
20.36
-
Work Transfer
31.53
-
Work Transfer -1
9.28
-
Work Transfer -2
17
-
Work Transfer -3
25.38
-
Work Transfer -4
31.02
-
Engine Material selection
20.12
-
Air standard Assumptions
11.41
-
Basic idea of Engine (Carnot engine)
49.34
-
Numerical 1 - Carnot Engine
21.3
-
Work Transfer -5
39.15
-
Work Transfer -6
17.31
-
Work Transfer -7
23.45
-
Work Transfer -8
13.26
-
Work Transfer-9
47.44
-
Stirling cycle
19.32
-
Ericson cycle
17.43
-
Otto cycle
40.51
-
Numerical2 - Otto cycle
10.5
-
Numerical3 - Otto cycle
15.38
-
Heat Transfer-10
58.15
-
Numerical (1) - Net Work Transfer
28.06
-
Numerical (2) - Net Work Transfer
21.29
-
Numerical (3) - Net Work Transfer
30.49
-
Numerical (4) - Net Work Transfer
17.55
-
Numerical4 - Otto cycle
10.16
-
Mean effective pressure
5.4
-
Numerical 5 - Mean effective Pressure
4.04
-
Numerical 6 - Mean effective Pressure
6.15
-
Numerical7 - Mean effective Pressure
7.45
-
Numerical8 - Otto cycle
8.53
-
Numerical9 - Otto cycle
5.54
-
Numerical10 - Otto cycle
8.01
-
Numerical11 - Otto cycle
8.57
-
Numerical12 - Otto cycle
3.16
-
Numerical13 - Otto cycle
5.14
-
Numerical14 - Otto cycle
6.52
-
Numerical15 - Otto cycle
3.36
-
Numerical16 - Otto cycle
7.47
-
Numerical (5) - Net Work Transfer
16.51
-
Numerical (6) - Net Work Transfer
20.51
-
Numerical (7) - Net Work Transfer
26.3
-
Numerical (8) - Net Work Transfer
21.19
-
Numerical (9) - Net Work Transfer
22.16
-
Numerical (10) - Net Work Transfer
20.5
-
Numerical (11) - Net Work Transfer
18.48
-
Diesel Cycle
53.04
-
Numerical17 - Diesel cycle
8.55
-
Numerical18 - Diesel cycle
4.18
-
Numerical19 - Diesel cycle
6.44
-
Numerical20 - Diesel cycle
5.3
-
Numerical21 - Diesel cycle
15.25
-
Energy Balance
29.46
-
Energy Balance for Closed System 1
21.3
-
Energy Balance for Closed System 2
40.22
-
Energy Balance for Closed System 3
26.4
-
Numerical (12) - Net Work Transfer
18.09
-
Numerical (13) - Heat Transfer
28.21
-
Dual Cycle
35.58
-
Lenoir Cycle
13.07
-
Numerical22 - Lenoir cycle
7.01
-
Atkinson Cycle
11.5
-
Swept Volume Flow Rate
12.55
-
Numerical23 - Diesel cycle
5.42
-
Volumetric Efficiency
13.15
-
Acceleration of Air by a Fan
20.19
-
Concept of Enthalpy
20.5
-
Enthalpy of Compressed Liquid
22.49
-
Numerical(2)- Heating of a Gas in a Tank by Stirring
27.12
-
Numerical(3)- Heating of a Gas by a Resistance Heating
21.08
-
Numerical(4)- Heating of a Gas at Constant Pressure
20.55
-
Specific Heat of Substance-1
24.02
-
Comparison of Cycles
37.51
-
Numerical24 - Comparison of cycles
6.52
-
Thermochemistry
53.29
-
Specific Heat of Substance-2
25.1
-
Specific Heat of Substance-3
18.33
-
Numerical(5)- Cooling of an Iron Block by Water
17.02
-
Numerical(6)- Cooling of Copper by Oil
5.32
-
Numerical(7)- Expansion of Water against a Spring with Stopes
19.43
-
Numerical(8)- Piston facing both side of Fluid
13.1
-
Numerical(9)- Expansion of Air against a Spring with Two Stopes
15.06
-
Numerical(10)- Water Expand between Two Stopes
21.06
-
Numerical(11)- Expansion of Water in Room
7.46
-
Numerical(12)- Energy transfer by a Computer
10.49
-
Numerical(13)- Tank A and Cylinder B
14.45
-
Numerical25 - Thermochemistry
8.01
-
Numerical26 - Thermochemistry
9.11
-
Numerical27 - IC Engine
2.49
-
Numerical28 - Petrol engine
11.21
-
Numerical29 - Diesel cycle
6.48
-
Numerical30 - Thermochemistry
5.36
-
Numerical31 - Otto cycle
8.36
-
Morse key test
22.46
-
Numerical32 - Otto cycle
4.5
-
Numerical33 - Diesel cycle
6.59
-
Numerical34 - Thermodynamic cycles
6.1
-
Two Stroke Vs Four Stroke Engine
37.36
-
Mass and Volume Flow Rates
28.09
-
Conservation of Mass Principle
25.21
-
Concept of Flow Work
24.34
-
Total Energy of Flowing Fluid
19.24
-
Energy Analysis of Steady-State, Steady-Flow System (SSSF)
43.26
-
Introduction to Gas Turbine
9.49
-
Bryton Cycle
33.03
-
Numerical1 - Bryton Cycle
5.25
-
Numerical2 - Bryton Cycle
15.17
-
Numerical3 - Bryton Cycle
7.02
-
Introduction to Optimum Work in Gas Turbine
18.25
-
Throttling Process
27.41
-
Numerical(1)-Accleration of Fluid in Nozzle
20.48
-
Numerical(2)-Compressing Air by Compressor
23.17
-
Numerical(3)-Cooling of Air by Water
24.33
-
Numerical(4)-Deceleration of Air in a Diffuser
12.29
-
Numerical(5)-Power Generation by a Steam Turbine
13.27
-
Numerical(6)- Expansion of Refrigerant in a Refrigerator
25.29
-
Numerical(7)-Mixing of Hot and Cold Air in a Mixing Chamber
9.58
-
Numerical(8)- Geothermal Supply
13.38
-
Optimum Work in Gas Turbine
30.25
-
Actual Bryton Cycle
20.3
-
Numerical4 - Bryton Cycle
8.16
-
Numerical5 - Bryton Cycle
16.45
-
Numerical6 - Bryton Cycle
8.02
-
Difference between Steady and Unsteady- Flow Process
25.03
-
Energy Analysis of Unsteady-Flow Process
22.34
-
Numerical(1)-Charging of a Rigid Tank by Air
28.47
-
Numerical(2)-Charging of a Rigid Tank as Closed-System Equivalence
17.27
-
Numerical(3)-Discharging of a Tank
17.02
-
Numerical(4)- Charging of an Ammonia
26.17
-
Methods to Improve Efficiency of Gas Turbine
48.59
-
Numerical7 - Bryton Cycle
4.23
-
Numerical8- Bryton Cycle
6.09
-
Some Information About Gas Turbine
6.32
-
Numerical9 - Theory Quetions on Bryton Cycle
24.07
-
Numerical(5)-Steam Engine Based on Steam Turbine
25.54
-
Numerical(6)- Charging of Spring -Loaded Piston-Cylinder
20.12
-
Numerical(7)-Discharging of Saturated vapour
21.14
-
Introduction to The Second Law
37
-
Thermal Energy Reservoirs
13.25
-
Heat Engines
32.34
-
Numerical10 - Gas Turbine
15.14
-
Numerical11 - Gas Turbine
5.2
-
Numerical12 - Gas Turbine
8.47
-
Tripple Point
18.32
-
Gibbs Phase Rule
10.06
-
Ideal Gas Relations
60.33
-
Kelvin-Plank Statement
28.43
-
Clausius Statement
25.07
-
Equivalance of the Two Statements
11.3
-
Perpetual-Motion Machines
12.07
-
Reversible Process
22.46
-
Factor Making a Process Irreversible
39.29
-
Vapour Pressure Curve
11
-
Liquid Vapour Dome
34.17
-
H-S Diagram (Mollier Chart)
7.53
-
Liquid Vapour Region Calculation
25.17
-
Determination of Dryness Fraction
10.16
-
Internally and Externally Reversible Process
42.14
-
The Carnot Cycle
34.18
-
The Carnot Principles
41.3
-
Concept of Absolute Thermodynamic Scale
19.52
-
The Carnot Heat Engine
18.3
-
T-S Diagram for Phase Change of Ice
19.48
-
Processes on Various Plots
8.45
-
Some Important Points
11.38
-
Numerical 1 - Properties of Fluid
13.39
-
Numerical 2 - Properties of Fluid
5.53
-
Numerical 3 - Properties of Fluid
11.14
-
Numerical 4 - Properties of Fluid
5.01
-
Numerical 5 - Properties of Fluid
4.31
-
Numerical 6 - Properties of Fluid
28.25
-
Introduction to Quantitative Parameter
17.58
-
Extent of Irreversibility 1
25.18
-
Extent of Irreversibility 2
45.21
-
N1- Cycle Possible or Not
10.38
-
N2-Heating a House by Carnot Heat Pump
15.12
-
N3- Combination of Refrigeration and H.E.
12.51
-
N4- Minimum Area of the Panel
14.43
-
N5-Indo reversible Cycle
18.31
-
Numerical 7 - Properties of Fluid
6.5
-
Numerical 8 - Properties of Fluid
6.37
-
Numerical 9 - Properties of Fluid
3.26
-
Numerical 10 - Properties of Fluid
33.33
-
Numerical 11 - Properties of Fluid
3.22
-
Numerical 12 - Properties of fluid
5.24
-
Numerical 13 - Properties of fluid
4.27
-
Numerical 14 - Properties of fluid
5.04
-
Clausius Inequality 1
32.27
-
Clausius Inequality 2
21.39
-
Reversible and Adiabatic Process
17.05
-
Reversible Isothermal H.T.
23.07
-
The T-ds Relations
44.31
-
Entropy Chang of Incompressible Substance
13.09
-
Simple Steam Power Plant
34.14
-
Steam Rate and Heat Rate
5.55
-
Effect of Operating Variables on Performance of Rankine Cycle
17.47
-
Losses in Steam Turbine
15.38
-
Methods to Improve Efficiency of Rankine Cycle
27.15
-
Mean Temperature of Heat Supply and Heat Rejection
14.02
-
Numerical 1- Rankine Cycle
4.58
-
Numerical 2- Rankine Cycle
14.18
-
Chang in Entropy for Ideal Gas
20.54
-
Work Transfer During Adiabatic Process
32.34
-
Entropy Chang of Polytropic Process
27.09
-
Reversible Polytropic Process
21.04
-
Entropy Generation
30.08
-
Numerical 3- Rankine Cycle
6.12
-
Numerical 4- Rankine Cycle
11.5
-
Numerical 5- Rankine Cycle
6.43
-
Numerical 6- Rankine Cycle
14.55
-
Numerical 7- Rankine Cycle
9.03
-
Numerical 8- Rankine Cycle
4.49
-
Numerical 9- Rankine Cycle
20.43
-
Numerical 10- Rankine Cycle
5.5
-
Numerical 11- Rankine Cycle
10.33
-
Principle of Inc. of Entropy
35.16
-
Entropy Change of Pure Substances
31.37
-
Entropy Blance 1
22.04
-
Entropy Blance 2
26.5
-
Entropy Blance 3
29.49
-
Numerical 12- Rankine Cycle Theory Questions
34.52
-
Numerical 13- Rankine Cycle
31.3
-
Numerical14- Rankine cycle
12.47
-
Numerical15- Rankine cycle
2.59
-
Numerical16- Rankine cycle
15.04
-
Numerical17- Rankine cycle
11.25
-
Numerical18- Rankine cycle
6.41
-
Entropy Blance 4
30.55
-
Entropy Blance 5
34.59
-
Entropy Blance 6
17.57
-
Entropy Blance 7
16.08
-
Reversible Steady-Flow Work 1
20.07
-
Reversible Steady-Flow Work 2
26.16
-
Carnot Refrigeration Cycle
40.28
-
Bell Coleman Cycle of Refrigeration
14.33
-
Vapour Compression Refrigeration Cycle
30.13
-
N1 - Total Entropy Generation With Two Stops System
36.05
-
N2 - Process is Possible or Not
14.28
-
N3 - Mixing of Two Gas
18.11
-
N4 - Spring Loaded Piston Cylinder
12.45
-
N5 - Two Tank with HP
17.45
-
N6 - HE with Hydraulic Press
14.08
-
N7 - Turbine with HE
12.2
-
N8 - Entropy Generation in a HE
31.49
-
Design of VCR Cycle
20.4
-
Volumetric Efficiency of Compressor
16.09
-
Effect of Operating Variables on Performance of VCR Cycle
24.4
-
Methods of Refrigeration
28.44
-
Refrigerants
11.06
-
N9 - Entropy Generation of Tank Filling with Spring
27.1
-
N10 - Entropy Generaion with Polytopic Process
20.59
-
N11 - Cmpressing of Lquid by Pump
11.11
-
Work Potential of Energy-Introduction-1
35.18
-
Work Potential of Energy-Introduction-2
24.58
-
Reversible Work
32.04
-
Numerical 1 -VCR Cycle
8.4
-
Numerical 2 -VCR Cycle
10.48
-
Numerical 3 -VCR Cycle
8.03
-
Numerical 4 -VCR Cycle
5.03
-
Numerical 5 -VCR Cycle
9.38
-
Numerical 6 -VCR Cycle
3.35
-
Numerical 7 -VCR Cycle
4.18
-
Numerical 8 -VCR Cycle
11.53
-
Numerical 9 -VCR Cycle
13.03
-
Numerical 10 -VCR Cycle
12.31
-
Numerical 11 - Reversed Carnot Cycle
6.45
-
Numerical 12 -Theory Questions on Refrigeration
13.29
-
Numerical13 -Theory Questions on Refrigeration
5.3
-
Numerical14 -Theory Questions on Refrigeration
6.2
-
Actual Work
37.1
-
Exergy Balance for SSSF-Process
34.45
-
Exergy Balance for a Closed System
28.3
-
Irreversibility during the Cooling of an Iron Block
27.09
-
Second Law Efficiency
32.32
-
Introduction and Basic Definitions
28.19
-
Temperatures in Psychrometry
14.08
-
Numerical15 - Reversed Carnot cycle
5.55
-
Numerical16 -VCR Cycle
6.09
-
Vapour Absorption Refrigeration System
45.07
-
Numerical 17 - VAR Cycle
11.09
-
Numerical (1)- Reversible Work During Expansion Process
25.24
-
Numerical (2)- Second Law Analysis of Steam Turbine
49.04
-
Numerical (3)- Irreversibility During Expansion Process
35.39
-
Numerical (4)- Dropping a Hot Iron Block into Water
35.21
-
Enthalpy of Moist Air
17
-
Psychrometric Chart
20.29
-
Various Processes on Psychrometric Chart
61.53
-
Bypass and Contact Factor
10.11
-
Numerical (5)- Exergy Destruction During Heat Conduction
28.48
-
Numerical(6)-Exergy Destruction During Expansion of Steam
34.11
-
Numerical(7)- Exergy Destroyed During Stirring of a Gas
33.13
-
Numerical(8)- Exergy Destroyed During Mixing of Fluid Streams
32
-
Numerical(9)- Second law efficiency of Heat Engine
16.02
-
Numerical(10)- Charging a Compressed Air Storage System
23.55
-
Numerical(11)- Second law efficiency of Heat Exchanger
23.26
-
Total Heat Load
10.03
-
Summer Air Conditioning
14.1
-
Numerical 1- Psychrometry
5.59
-
Numerical 2- Psychrometry
6.27
-
Numerical 3- Psychrometry
4.22
-
Numerical 4- Psychrometry
4.23
-
Numerical 5- Psychrometry
4.48
-
Numerical 6- Psychrometry
8.09
-
Numerical 7- Psychrometry
13.13
-
Numerical 8- Psychrometry
4.21
-
Numerical 9- Psychrometry
8.1
-
Numerical 10- Psychrometry
3.52
-
Numerical 11- Psychrometry
2.36
-
Numerical 12- Psychrometry
5.14
-
Numerical 13- Psychrometry
3.26
-
Numerical 14- Psychrometry
3.26
-
Partial Derivatives and Associated Relations
29.53
-
The Maxwell Relations
23.04
-
The Clapeyron Equation
17.38
-
General Relations for du, dh, ds, Cv and Cp 1
26.44
-
General Relations for du, dh, ds, Cv and Cp 2
13
-
Numerical 15- Psychrometry
4.57
-
Numerical 16- Psychrometry
10.14
-
Numerical17- Theory Questions on Psychrometry
34.13
-
Numerical 18- Psychrometry
13.05
-
Numerical19- Psychrometry
13.4
-
Numerical20- Psychrometry
2.07
-
Numerical21- Psychrometry
3.15
-
Joule-Kelvin Effect
64.53
-
Numerical(1)- Evaluating The hfg of a Substance from The p-v-T Data
8.2
-
Numerical(2)- Evaluating The hfg of a Substance from The p-v-T Data
15.38
-
Numerical(3)- Evaluating The hfg of a Substance from The p-v-T Data
19.29
-
Introduction and Heat Transfer Mechanism
26.43
-
Conduction
29.18
-
Numerical 1 - Conduction
7.57
-
Thermal Conductivity
15.56
-
Numerical 2 - Measuring the Thermal conductivity
10.25
-
Thermal Diffusivity
5.29
-
Importance & Syllabus of Machine Design
6.48
-
Introduction- Definition of Machine Design
5.07
-
Load Classification: Static Load
13.1
-
Numerical1- Impact load
4.53
-
Load Classification: Variable Load
12.48
-
Stress
6.57
-
Classification of Stresses
11.38
-
Normal Stress Addition
7.33
-
Stress Tensor
15.43
-
Difference between Stress & Pressure
11.54
-
Numerical 3 - Measuring The thermal Diffusivity
6.07
-
Convection
15.28
-
Numerical 4 - Measuring The convection Heat transfer
12.05
-
Numerical 5 - Measuring The convection Heat transfer
8.22
-
Radiation
8.33
-
Numerical 6 - Measuring the radiation heat transfer
7.32
-
Combine Modes of Heat Transfer
5.58
-
Numerical 7 - Measuring the combine modes of heat transfer
10.08
-
Introduction to Design for Static Loading
28.41
-
Stresses on Inclined Plane
34.57
-
Stresses on Inclined Plane- 1D Loading
17.28
-
Numerical 2- Stress Tensor
3.16
-
Numerical 3- Normal stress addition
7.15
-
Numerical 4- Normal Stress Addition
9.08
-
Introduction and Conduction in Cartesian Coordinates
30.5
-
Numerical 1 - Conduction in Cartesian Coordinates
25.44
-
One - Dimensional Heat Conduction Equation in a Plain Slab
13.42
-
Numerical 2 - Measuring the Heat Transfer Due to 1-D Conduction in Plain Slab
20.19
-
Electrical Analogy
7.2
-
Stresses on Inclined Plane- Pure Shear
18.01
-
Principal Stresses and Maximum Shear Stress
25.23
-
Numerical 1- Complex Stresses
18.17
-
Mohr Circle
46.29
-
Plain Slab with Convection at Boundaries
12.2
-
Steady State Conduction in Composite Slab
13.34
-
Conduction Convection Heat Transfer through Composite Slab
20.07
-
Numerical GATE 2020 - Conduction Convection Heat Transfer Through Composite Wall
7.57
-
Numerical GATE 2019 - Thermal Conductivity
7.07
-
Numerical GATE 2018 - Conduction Through Plane Slab
8.42
-
Numerical GATE 2016 - Conduction Through Composite Slab
8.1
-
Numerical GATE 2015 - Conduction Through Plane Slab
8.46
-
Numerical GATE 2014 - Conduction Through Plane Slab
5.29
-
Mohr Circle for 1D Loading
14.29
-
Mohr Circle for Pure Shear
13.39
-
Mohr Circle for Isotropic loading (Hydrostatic pressure)
14.37
-
Mohr Circle for Beams (Shafts)
6.3
-
3D Mohrs Circle
12.28
-
Strain Analysis
22.42
-
Plane Stress and Plane Strain
6.28
-
Numerical GATE 2014 - Conduction Through Composite Slab
6.26
-
Numerical GATE 2014 - Heat Transfer Through Composite Slab
9.56
-
Numerical GATE 2014 - Conduction Convection Through Plane Slab
8.39
-
Numerical GATE 2006 - Conduction Through Composite Slab
7.25
-
Numerical GATE 2005 - Conduction Through Composite Slab
10.08
-
Numerical GATE 2005 - Heat Transfer Through Composite Slab
14.32
-
Numerical 3 - Measuring the heat transfer due to 1-D conduction in composite slab
13.26
-
Numerical 4 - Measuring the Heat Transfer Due to Conduction in Composite Slab with Convection at Boundaries
25.48
-
Numerical 2- 3D Mohrs Circle
17.22
-
Numerical 3-Complex Stresses
12.11
-
Numerical 4- Complex Stresses
12.49
-
Numerical 5- Complex Stresses
9.46
-
Numerical 6- Complex Stresses
15.52
-
Numerical 7 - Complex Stresses
12.48
-
Numerical 5 - Measuring the Heat Transfer with Heat Transfer with Heater Inside Composite Wall
29.1
-
Thermal Contact Resistance and Temperature Profile with Convection at Boundaries
11.52
-
Numerical 6 - Measuring the Thermal Contact Resistance
23.31
-
Numerical GATE 2021 - Conduction Convection Heat Transfer
9.29
-
Numerical GATE 2009 - Conduction Convection Heat Transfer
9.04
-
Numerical GATE 2008 - Conduction Heat transfer
7.46
-
GATE 2003 - Conduction Convection Heat Transfer
10.36
-
Numerical 8- Complex Stresses
13
-
Numerical 9- Complex Stresses
9.58
-
Numerical 10- Complex Stresses
7.02
-
Pure Shear Numericals
19.49
-
Numerical 11- Complex stresses
3.26
-
Numerical 12- Complex stresses
2.53
-
Numerical 13- Complex stresses
10.54
-
Numerical 14- Complex stresses
4.55
-
Numerical 15- Complex stresses
4.05
-
Numerical 16- Complex stresses
4.31
-
Numerical 17- Complex stresses
8.02
-
Steady State 1-Dimensional Heat Conduction Through Variable Area
22.36
-
Numerical 7 - Steady State 1-Dimensional Heat Conduction Through Variable Area
17.12
-
Numerical 8 - Steady State 1-Dimensional Heat Conduction Through Variable Area
27.5
-
Conduction Through Cylinder - Cylindrical Coordinates
21.34
-
Numerical 18- Complex stresses
12.42
-
Numerical 19- Complex stresses
5.33
-
Numerical 20- Complex stresses
3.36
-
Numerical 21- Complex stresses
4.06
-
Numerical 22- Complex stresses
3.39
-
Numerical 23- Complex stresses
3.13
-
Numerical 24- Complex stresses
3.17
-
Numerical 25- Complex stresses
4.36
-
Numerical 26- Complex stresses
9.51
-
Numerical 9 - Conduction Through Cylinder
19.05
-
Conduction Through Cylinder Without Heat Generation
32.07
-
Concept of Logarithmic Mean Area
9.08
-
Numerical 10- Steam Pipe Heat Conduction
17.49
-
Introduction to Failure Theories
15.38
-
Stress Strain Diagram for Strength Calculation
62.19
-
Rankine Theory(Maximum Normal Stress Theory)
29.19
-
Heat Conduction Through Single and Composite Cylinder
43.48
-
Numerical GATE 2021 - Conduction Convection Heat Transfer Through Cylinder
15.41
-
Numerical GATE 2019 - Temperature Distribution
6.03
-
Numerical GATE 2007 - Heat Transfer in Cylinder
4.09
-
Numerical GATE 2004 - Conduction Through Composite Cylinder
11.58
-
Numerical 11 - Composite Cylinder
32.59
-
Numerical 1- Rankine Theory
3.5
-
Guest or Trescas Theory (Maximum Shear Stress Theory)
34.26
-
Numerical 2- Guest Theory
5.36
-
Saint Venants Theory (Maximum Normal Strain Theory)
35.18
-
Numerical 12 - Steam Condensed in Pipe Best Designed Question
20.5
-
Heat Conduction Equation for Conduction Through Spheres
69.03
-
Numerical 13 - Conduction Through Composite Sphere
11.35
-
Numerical 3- Saint Venants Theory
5.04
-
Haighs Theory (Strain Energy Theory)
26.34
-
Numerical 4- Haighs Theory
4.08
-
Von Moses and Henkys Theory (Distorsion Energy or Shear Strain Energy Theory)
45.32
-
Numerical 14 - Conduction Through Composite Sphere with Convection at Boundaries
16.33
-
Numerical GATE 2020 - Conduction Convection Heat Transfer
11.41
-
Numerical GATE 1994 - Order of Insulation
20.34
-
Numerical 15 - Critical Radius of Insulation
11.42
-
Concept of Critical Radius of Insulation
35.55
-
Summary of Theories of Failure
18.59
-
Numerical 5- Theories of Failure
14.26
-
Guest Theory Vs Distorsion Energy Theory
5.5
-
Numerical 6-Theories of Failure
5.2
-
Shaft Subjected to Combined Bending and Twisting Moment
41.4
-
Numerical 16 - Heat Transfer Due to Critical Radius of Insulation
25.03
-
Numerical GATE 2016 - Critical Radius of Insulation
5.42
-
Numerical GATE 2015 - Critical Radius of Insulation for Cylinder
3.42
-
Numerical GATE 2015 - Critical Radius of Insulation
6.48
-
Numerical GATE 2011 - Critical Radius of Insulation
4.34
-
Numerical GATE 1999 - Critical Radius of Insulation
4.18
-
Numerical GATE 1996 - Critical Radius of Insulation
3.34
-
Heat Transfer with Variable Thermal Conductivity
34.09
-
Numerical 7- Theories of failure
38.08
-
Numerical 8- Theories of failure
12.36
-
Numerical 9- Theories of failure
7.55
-
Numerical 10- Theories of failure
7.2
-
Numerical 11- Theories of failure
6.57
-
Numerical 12- Theories of failure
4.45
-
Numerical 13- Theories of failure
9.29
-
Numerical 14- Theories of failure
3.39
-
Numerical 15- Theories of failure
8.27
-
Numerical 16- Theories of failure
4.52
-
Numerical 17 - Heat Transfer with Variable Thermal Conductivity
39.23
-
Conduction with Heat Generation in Plane Slab
40.56
-
Steady, 1D Conduction with Heat Generation in Plane Slab
25.01
-
Stress Concentration
14.12
-
Stress Concentration for Elliptical Hole
14.33
-
Effect of Stress Concentration
13.18
-
Numerical 17- Theories of failure
4.16
-
Numerical 18- Theories of failure
4.25
-
Numerical 19- Theories of failure
3.05
-
Numerical 20- Theories of failure
2.57
-
Numerical 21- Theories of failure
3.29
-
Numerical 22- Theories of failure
3.21
-
Numerical 23- Theories of failure
4.43
-
Numerical 24- Theories of failure
2.41
-
Numerical 25- Theories of failure
4.42
-
Numerical 26- Theories of failure
13.31
-
Numerical 27- Theories of failure
6.13
-
Numerical GATE 2019 - Heat Generation in Composite Slab
22.21
-
Numerical GATE 2007 - Heat Generation in Plane Slab
16
-
Conduction with Heat Generation in Cylinders
30.27
-
Numerical GATE 2017 - Heat Generation in Cylinder
4.41
-
Numerical GATE 2015 - Heat Generation in Cylinder
8.1
-
Numerical GATE 2007 - Heat Generation in Cylinder
7.16
-
Introduction to Fluctuating Stresses
29.35
-
Fatigue Strength and Endurance Strength
19.39
-
S-N Curve for Steel
14.3
-
Corrected Endurance Strength
30.17
-
Conduction with Heat Generation in Spheres
25
-
Numerical 18 - Conduction with Heat Generation in Solids
13.27
-
Numerical 19 - Conduction with Heat Generation in Solids Best Designed Question
7.42
-
Numerical 20 - Conduction Convection Heat Transfer through Composite Slab
10
-
Numerical 21 - Conduction Convection Heat Transfer through Plane Slab
6.53
-
Numerical 22 - Conduction Heat Transfer through Composite Slab
19.39
-
Design for Finite and Infinite Life (Completely Reversed Stress)
25
-
Numerical1- Infinite Life
12.33
-
Numerical2- Infinite Life
8.07
-
Numerical3- Infinite Life
9.01
-
Numerical4- Finite Life
8.54
-
Numerical5- Finite life
11.03
-
Numerical6- Finite life
25.05
-
Numerical 23 - Conduction Convection Heat Transfer through Composite Cylinder
23.51
-
Numerical 24 - Conduction Convection Heat Transfer through Composite Cylinder
24.15
-
GATE Theory Questions on Conduction
44.07
-
Numerical7- Finite life
16.34
-
Cumulative Damage in Fatigue
11.5
-
Numerical 8- Cumulative Damage in Fatigue
17.53
-
Soderberg, Goodman and Gerber Line
19.45
-
Modified Goodman Diagram
15.28
-
Fatigue Design Under Combined Stresses
12.51
-
Numerical 9- Goodman Diagram
11.01
-
Fin equation
34.24
-
Infinitely Long Fin
22.23
-
Fin with insulated tip that is negligible heat transfer rom the fin tip
25.55
-
Convection from Fin Tip
15.13
-
Numerical 10- Modified Goodman Diagram
10.14
-
Numerical 11- Goodman Diagram
7.58
-
Numerical 12- Factor of Safety Calculation
9.25
-
Numerical 13- Combined Stresses
7.33
-
Numerical 14- Combined Stresses
13.31
-
Numerical 15- Stress Concentration
4.1
-
Numerical 16- Fatigue Loading
6
-
Numerical 17- Fatigue Loading
5.47
-
Numerical 18- Fatigue Loading
4.34
-
Numerical 19- Fatigue Loading
4.54
-
Numerical 20- Fatigue Loading
2.59
-
Numerical 21- Fatigue Loading
3.01
-
Numerical 22- Fatigue Loading
3.45
-
Numerical 23- Fatigue Loading
12.19
-
Fin with Specified Temperature at Both Ends and Some Special Cases
31.35
-
Fin Efficiency
19.57
-
Fin Effectiveness
16.34
-
Numerical 1 - Fin Equation
7.4
-
Numerical 2 - Fin Equation Best Designed Question
22.17
-
Numerical 24- Fatigue Loading
4.08
-
Numerical 25- Fatigue Loading
8
-
Numerical 26- Fatigue Loading
5.42
-
Numerical 27- Fatigue Loading
6.25
-
Numerical 28- Fatigue Loading
7.07
-
Numerical 29- Fatigue Loading
4.49
-
Numerical 30- Fatigue Loading
4.01
-
Numerical 31- Fatigue Loading
8.03
-
Numerical 32- Fatigue Loading
12.38
-
Numerical 33- Fatigue Loading
29.31
-
Methods to Improve Fatigue Strength
11.12
-
Numerical 3 - Fin Equation Best Designed Question
30.23
-
Numerical 4 - Fin Efficiency
10.46
-
Numerical 5 - Fin Effectiveness
11.46
-
Numerical 6 - Fin with Specified Temperature at Both Ends and Some Special Cases Best Designed Question
14.01
-
Numerical 7 - Heat Transfer from Fin
16.07
-
Numerical 8 - Number of Fins Calculation
11.15
-
Introduction to Friction and Inertia
30.59
-
Introduction to Brakes
14.11
-
Principle of Shoe Brake
13.13
-
Simple Shoe Brake
15.4
-
Band Brake
12.56
-
Pressure Ratio in Band Brake
16.58
-
Numerical 9 - Infinite Long Fin
9.38
-
GATE 2020 - Infinite Long Fin
4.04
-
GATE 2017 - Heat Transfer from Fin
3.4
-
GATE 2010 - Heat Transfer from Fin
8.01
-
GATE 1992 - Fin Special Case
5.41
-
Lumped System Analysis
59.23
-
Differential Band Brake
13.26
-
Numerical1- Shoe Brake
8.13
-
Numerical2- Shoe Brake
8.12
-
Numerical3- Shoe brake
6.57
-
Numerical4- Shoe brake
7.13
-
Numerical5- Band brake
5.3
-
Numerical6- Band brake
5.13
-
Numerical7- Band brake
5.01
-
Numerical8- Band brake
8.5
-
Numerical9- Band brake
5.3
-
Numerical10- Block brake
27.51
-
Biot Number and Characteristic Length for Different Surfaces
35.01
-
Numerical 1 - Time Measurement by Thermocouples and Temperature Variation with Time
14.1
-
Numerical 2 -Rate of Cooling and Temperature Measurement Best Designed Question
15.24
-
Numerical 3 - Temperature Measurement by Thermocouples
16.18
-
Numerical 4 - Temperature Measurement by Thermocouples Best Designed Question
14.1
-
Numerical 11- Differential Band brake
9.03
-
Numerical12- Brake design
8.4
-
Numerical13- Brake design
10.26
-
Introduction to Clutch
7.05
-
Types of Clutch
11.01
-
Single Plate Clutch
34.4
-
Numerical 14- Single Plate Clutch
7.19
-
Numerical 15- Single Plate Clutch
5.14
-
Numerical 16- Single Plate Clutch
6.26
-
Numerical 5 - Transient Heat Conduction
10.01
-
GATE 2021 - Transient Heat Conduction
6.37
-
GATE 2017 - Transient Heat Conduction
7.16
-
GATE 2016 - Transient Heat Conduction
7.03
-
GATE 2016 - Transient Heat Conduction Time Calculation
6.35
-
GATE 2013 - Transient Heat Conduction Time Calculation
7.14
-
GATE 2007 - Transient Heat Conduction
7.11
-
GATE 2005 - Transient Heat Conduction
8.41
-
GATE 2004 - Transient Heat Conduction Time Calculation
8.09
-
GATE 2016 - Transient Heat Conduction Error Function
9.21
-
Theory Questions on Transient Heat Conduction
12.51
-
Multi Plate Clutch
10.24
-
Numerical 17- Multi Plate Clutch
7.12
-
Numerical 18- Multi Plate Clutch
6.29
-
Conical Clutch
10.54
-
Numerical19- Conical Clutch
12.18
-
Centrifugal Clutch
16.02
-
Numerical20- Centrifugal Clutch
11.08
-
Numerical 21- Single Plate Clutch
9.01
-
Numerical22- Braking torque
5.3
-
Numerical 23- Single Plate Clutch
8.18
-
Types of Heat Exchangers
86.37
-
Numerical 24- Single Plate Clutch
7.46
-
Numerical 25- Single Plate Clutch
4.13
-
Numerical 26- Single Plate Clutch
6.2
-
Numerical 27- Single Plate Clutch
8.55
-
Numerical28- Block brake
10.43
-
Numerical29- Shoe brake
9.53
-
Numerical30- Brake and Clutch Design
13.25
-
Introduction to Joints
12.06
-
Introduction to Welded Joints
6.17
-
Butt Weld
7.54
-
Fillet Weld
23.3
-
Heat Exchangers Design Analysis and Log Mean Temperature Difference Method for Parallel Flow
33.43
-
Log Mean Temperature Difference Method for Counter Flow
50.04
-
GATE 2020 - LMTD of Counter Flow Heat Exchanger
4.2
-
GATE 2019 - LMTD of Parallel Flow Heat Exchanger
8.19
-
Numerical1 - Butt weld
4.56
-
Numerical2 - Fillet weld
3.1
-
Numerical3- Fillet weld
3.53
-
Numerical4- Fillet weld
5.57
-
Numerical5- Butt weld
5.59
-
Numerical6- Fillet weld
4.1
-
Numerical7- Fillet weld
3.29
-
Introduction to Riveted Joints
13.56
-
Failure and Efficiency of Riveted Joints
19.15
-
Eccentrically Loaded Riveted Joints
21.54
-
Numerical 8- Eccentrically Loaded Riveted Joints
15.52
-
GATE 2018 - Heat Transfer Through Condenser
8.37
-
GATE 2017 - Counter Flow Heat Exchanger
9.28
-
GATE 2017 - LMTD of Condenser
8.24
-
GATE 2016 - Comparison of Parallel and Counter Flow Heat Exchanger
14.32
-
GATE 2015 - Counter Flow Heat Exchanger
11.08
-
GATE 2014 - Counter Flow Heat Exchanger
9.08
-
GATE 2013 - LMTD of Condenser
5.09
-
GATE 2011 - Counter Flow Heat Exchanger
8.49
-
GATE 2008 - Counter Flow Heat Exchanger
9.18
-
GATE 2007 - Counter Flow Heat Exchanger
5.31
-
GATE 2005 - Comparison of Parallel and Counter Flow Heat Exchanger
11.55
-
Numerical 9- Eccentrically Loaded Riveted Joints
16.41
-
Numerical10- Efficiency of Riveted Joint
24.46
-
Numerical 11- Riveted Joint
4.07
-
Numerical 12- Riveted Joint
11.45
-
Numerical 13- Riveted Joint
4.33
-
Introduction to Bolted Joints
35.42
-
GATE 2004 - Area of Condenser
9.48
-
GATE 2003 - Heat Transfer Through Heat Exchanger
4.53
-
GATE 2000 - LMTD of Heat Exchanger
3.48
-
The Effectiveness NTU-Method
22.28
-
Effectiveness NTU - Method for Parallel Flow Heat Exchange
19.55
-
Effectiveness NTU - Method for Parallel Heat Exchanger Flow Special Cases
4.52
-
Effectiveness NTU - Method for Counter Flow Heat Exchanger
20.35
-
GATE 2021 - Effectiveness of Heat Exchanger
13.28
-
Eccentrically Loaded Bolted Joint
25.57
-
Numerical 14 - Eccentrically Loaded Bolted Joint
11.36
-
Numerical 15 - Eccentrically Loaded Bolted Joint
15.12
-
Numerical 16 -Eccentrically Loaded Bolted Joint
11.59
-
Numerical 17- Eccentrically Loaded Bolted Joint
8.04
-
Numerical 18- Eccentrically Loaded Bolted Joint
13.22
-
Bolts of Uniform Strength
12.46
-
GATE 2014 - Effectiveness of Counter Flow Heat Exchanger
6.48
-
GATE 2012 - Effectiveness of Counter Flow Heat Exchanger
13.3
-
GATE 2010 - Effectiveness of Parallel Flow Heat Exchanger
9.25
-
GATE 2009 - Effectiveness of Parallel Flow Heat Exchanger
11.45
-
GATE 1997 - Effectiveness of Heat Exchanger
6.43
-
GATE Theory Questions on Heat Exchanger
24.51
-
Numerical 19- Bolted Joint
5.02
-
Numerical 20- Bolted Joint
8.58
-
Numerical 21- Bolted Joint
4.56
-
Axially Loaded Unsymmetrical Weld
12.11
-
Numerical 22 - Axially Loaded Unsymmetrical Weld
10.09
-
Eccentrically Loaded Welded Joints
22.01
-